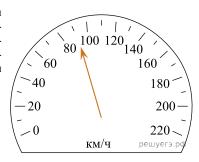
При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида $(1,4\pm0,2)$ Н записывайте следующим образом: 1,40,2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Среди перечисленных ниже физических величин векторная величина указана в строке:

1) давление


2) масса

3) энергия

4) сила

5) путь

2. Во время испытания автомобиля водитель поддерживал постоянную скорость, значение которой указывает стрелка спидометра, изображённого на рисунке. Путь s=42 км автомобиль проехал за промежуток времени Δt , равный:

1) 16 мин

2) 19 мин

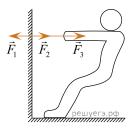
3) 22 мин

4) 25 мин

5) 28 мин

3. Трасса велогонки состоит из трех одинаковых кругов. Если первый круг велосипедист проехал со средней скоростью $<v_1>=27$ км/ч, второй — $<v_2>=35$ км/ч, третий — $<v_3>=22$ км/ч, то всю трассу велосипедист проехал со средней скоростью $<v_2>=20$ пути , равной:

1) 25 км/ч


2) 26 км/ч

3) 27 км/ч

4) 28 км/ч

5) 29 км/ч

4. Невесомую веревку, прикрепленную к стене, человек тянет в горизонтальном направлении (см.рис.). На рисунке показаны: \vec{F}_1 — сила, с которой стена действует на веревку; \vec{F}_2 — сила, с которой веревка действует на стену; \vec{F}_3 — сила, с которой человек действует на веревку. Какое соотношение между векторами сил F_1 и F_2 ?

1)
$$\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = 0$$
 2) $\vec{F}_2 = \vec{F}_3$ 3) $\vec{F}_1 = -\vec{F}_3$
4) $-\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = 0$ 5) $\vec{F}_1 = -\vec{F}_2$

5. К некоторому телу приложены силы $\overrightarrow{F_1}$ и $\overrightarrow{F_2}$, лежащие в плоскости рисунка (см. рис. 1). На рисунке 2 направление ускорения \overrightarrow{d} этого тела обозначено цифрой:

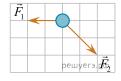
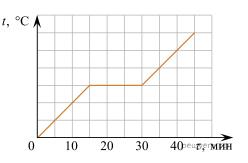


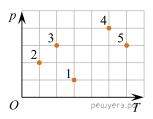
Рис. 1

Рис. 2

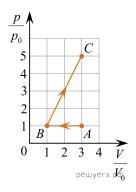

1) 1 2) 2

3)3

5) 5


4) 4

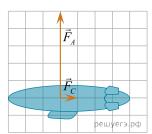
- **6.** Вблизи поверхности Земли атмосферное давление убывает на 1 мм рт. ст. при подъеме на каждые 12 м. Если у подножия атмосферное давление $p_1 = 760$ мм рт. ст., а на ее вершине $p_2 = 732$ мм рт. ст., то высота h горы равна:
 - 1) 280 м
- 2) 296 м
- 3) 312 м
- 5) 348 м
- 7. В момент времени $\tau_0 = 0$ мин жидкое вещество начали нагревать при постоянном давлении, ежесекундно сообщая веществу одно и то же количество теплоты. На рисунке приведён график зависимости температуры t вещества от времени t. Две трети массы вещества испарилось к моменту времени t1, равному:



4) 336 m

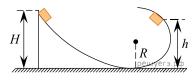
- 1) 5 мин
- 2) 10 мин
- 3) 20 мин
- 4) 25 мин
- 5) 45 мин
- **8.** На p-T диаграмме изображены различные состояния некоторого вещества. Состояние с наибольшей средней кинетической энергией молекул обозначено цифрой:

- 1) 1
- 2) 2
- 3) 3 4) 4
- 5) 5
- 9. Идеальный одноатомный газ, количество вещества которого постоянно, переводят из состояния A в состояние C (см. рис.). Значения внутренней энергии U газа в состояниях A, B, C связаны соотношением:


1)
$$U_C > U_A > U_B$$
 2) $U_C > U_B > U_A$ 3) $U_B > U_C > U_A$ 4) $U_C = U_B > U_A$ 5) $U_C > U_B = U_A$

10. Если в результате трения о шерсть янтарная палочка приобрела отрицательный заряд q=-16 нКл, то общая масса m электронов, перешедших на янтарную палочку, равна:

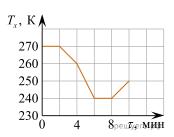
1) 9,1 · 10⁻¹⁷
$$\Gamma$$
 2) 8,8 · 10⁻¹⁷ Γ 3) 7,6 · 10⁻¹⁷ Γ 4) 6,4 · 10⁻¹⁷ Γ 5) 5,8 · 10⁻¹⁷ Γ


11. Спортсмен, двигаясь прямолинейно, пробежал дистанцию длиной l=96 м, состоящую из двух участков, за промежуток времени $\Delta t=11$ с. На первом участке спортсмен разгонялся из состояния покоя и двигался равноускоренно в течение промежутка времени $\Delta t_1 = 6,0$ с. Если на втором участке спортсмен бежал равномерно, то модуль скорости υ спортсмена на финише равен ... $\frac{M}{C}$.

12. Дирижабль летит в горизонтальном направлении с постоянной скоростью. На рисунке изображены сила Архимеда $\vec{F}_{\rm A}$ и сила сопротивления воздуха $\vec{F}_{\rm c}$, действующие на дирижабль. Если сила тяги $\vec{F}_{\rm T}$ двигателей дирижабля направлена горизонтально, а модуль этой силы $\vec{F}_{\rm T}=10~{\rm kH}$, то масса m дирижабля равна ... т.

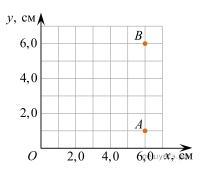
13. Трактор, коэффициент полезного действия которого $\eta=25$ %, при вспашке горизонтального участка поля равномерно двигался со скоростью, модуль которой $\upsilon=3,6$ км/ч. Если модуль силы тяги трактора F=20 кH, то за промежуток времени Δ t = 1,9 ч масса m израсходованного топлива (q=42 МДж/кг) равна ... кг.

14. С высоты H=50 см из состояния покоя маленький брусок начинает соскальзывать по гладкой поверхности, плавно переходящей в полуцилиндр радиусом R=26 см (см. рис.). Если траектория движения бруска лежит в вертикальной плосхости, то высота h на котор

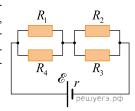


кальной плоскости, то высота h, на которой брусок оторвётся от внутренней поверхности полуцилиндра, равна ... см.

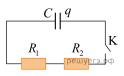
15. Идеальный одноатомный газ, начальный объем которого $V_1=1~{\rm m}^3$, а количество вещества остается постоянным, находится под давлением p_1 . Газ нагревают сначала изобарно до объема $V_2=3~{\rm m}^3$, а затем продолжают нагревание при постоянном объеме до давления $p_2=5\cdot 10^5$. Если количество теплоты, полученное газом при переходе из начального состояния в конечное, $Q=2,35~{\rm MДж}$, то его давление p_1 в начальном состоянии равно ... **кПа**.

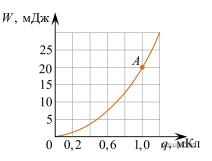

16. Небольшой пузырёк воздуха медленно поднимается вверх со дна водоёма. На глубине $h_1=97$ м температура воды ($\rho=1,0\frac{\Gamma}{{
m CM}^3}$) $t_1=7,0^{\circ}{
m C}$, а на глубине $h_2=1,0$ м температура воды $t_2=17^{\circ}{
m C}$. Если атмосферное давление $p_0=1,0\cdot 10^5$ Па, то отношение модуля выталкивающей силы F_2 , действующей на пузырек на глубине h_2 , к модулю выталкивающей силы F_1 , действующей на пузырек на глубине h_1 , равно ...

17. На рисунке изображен график зависимости температуры $T_{\rm X}$ холодильника тепловой машины, работающей по циклу Карно, от времени τ . Если температура нагревателя тепловой машины $T_{\rm H}=527~{\rm ^{\circ}C}$, то максимальный коэффициент полезного действия $\eta_{\rm max}$ машины был равен ... %.



18. Абсолютный показатель преломления воды n=1,33. Если частота световой волны $\nu=508$ ТГц, то длина λ этой волны в воде равна ... **нм**.


19. Если точечный заряд $q=2,50~{\rm HK}$ л, находящийся в вакууме, помещен в точку A (см.рис.), то потенциал электростатического поля, созданного этим зарядом, в точке B равен ... В.


20. Участок цепи, состоящий из четырех резисторов (см. рис.), сопротивления которых $R_1=5,0$ Ом, $R_2=10,0$ Ом, $R_3=15,0$ Ом и $R_4=20,0$ Ом, подключен к источнику тока с ЭДС $\varepsilon=10,0$ В и внутренним сопротивлением r=10,0 Ом. Тепловая мощность P_1 , выделяемая в резисторе R_1 , равна ... **мВт**.

- **21.** В идеальном LC-контуре, состоящем из катушки индуктивностью L=25 мГн и конденсатора ёмкостью C=0,90 мкФ, происходят свободные электромагнитные колебания. Если максимальная сила тока в катушке $I_0=80$ мА, то максимальный заряд q_0 конденсатора равен ... мкКл.
- **22.** На рисунке представлена схема электрической цепи, состоящей из конденсатора, ключа и двух резисторов, сопротивления которых $R_1=4,0\,$ МОм и $R_2=2,0\,$ МОм. Если электрическая емкость конденсатора $C=1,5\,$ нФ, а его заряд $q=18\,$ мкКл, то количество теплоты Q_2 которое выделится в резисторе R_2 при полной разрядке конденсатора после замыкания ключа К, равно ... мДж.



- **23.** Маленький заряженный шарик массой m=4,0 мг подвешен в воздухе на тонкой непроводящей нити. Под этим шариком на вертикали, проходящей через его центр, поместили второй маленький шарик, имеющий такой же заряд $(q_1=q_2)$, после чего положение первого шарика не изменилось, а сила натяжения нити стала равной нулю. Если расстояние между шариками r=30 см, то модуль заряда каждого шарика равен ... нКл.
- **24.** График зависимости энергии электростатического поля W конденсатора от его заряда q представлен на рисунке. Точке A на графике соответствует напряжение U на конденсаторе, равное ... В.

- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

- **27.** Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью $\vec{\upsilon}$. Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F}_c=-\beta\vec{\upsilon}$, где $\beta=1,25$ $\frac{\text{H}\cdot\text{c}}{\text{M}}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости υ движения электроскутера равен ... $\frac{\text{M}}{\text{c}}$.
- **28.** На рисунке представлен график зависимости силы тока I в катушке индуктивностью L=7.0 Гн от времени t. ЭДС \mathcal{E}_{C} самоиндукции, возникающая в этой катушке, равна ... В.

29. Идеальный колебательный контур состоит из конденсатора электроёмкостью C=150 мкФ и катушки индуктивностью L=1,03 Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

30. Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом α , а продолжение преломлённого луча пересекает эту ось под углом β . Если отношение $\frac{tg\,\beta}{tg\,\alpha}=\frac{5}{2}$, то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном

... см.